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* Internet’s energy consumption is already large
— US network infrastructure requires ~20 TWh/year

— Italy’s ISP Telecom Italia needs ~2 TWh/year
— Datacenter’s networking is 20% of server energy

« More demands will result in further increases
— Video streaming, Video-on-Demand, Cloud computing

« CMOS reaching a plateau in power-efficiency

— Cooling costs of new equipment will increase
« 1 MW for latest Cisco platform, CRS-1
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periods the traffic changes at least
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« Make individual components energy-proportional

— Implementation and deployment challenges
« Limits of energy efficiency in CMOS
- Leakage current
 Always-on components, ...




- Dynamically match resources
to the load

- make the ensemble
energy-proportional
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» Producing significant energy savings
* Meeting the SLOs

 Avoiding oscillations

 Ease of deployment

« Responsiveness to traffic variations



* Routing that minimizes power consumption

— Multi-commodity flow problem, but with
additional constraints for power objective:

Links + routers (switches) on/off

— Problem is NP-complete

When traffic demand changes,
optimal routing changes!
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Optimality *

[Gupta et al., SIGCOMM '03]

— Greening of the Internet vision

[INedevschi et al.,, NSDI '08]

— Local actions

[Chabarek et al., INFOCOM '08]

— Power-aware network provisioning

[Chiaraviglio et al., GreenCom '09],
ElasticTree [Heller et al., NSDI '10],
GreenTE [Zhang et al., ICNP "10]

— Online techniques
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Geant2 - European academic
network
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Routing table
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State-of-the-art

Time

B Recomputation causing congestion
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Recomputation causing energy waste
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REsPoNse
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Peak-hour traffic

Safety margin

Always-on paths provide a routing that
can carry low to medium amounts of
traffic at the lowest power consumption

On-demand paths start carrying traffic
when the load is beyond the capacity
offered by the always-on paths

Failover paths are designed to
minimize the impact of single failures

Minimize power consumption
17
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Network Topology
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« Online effort to shift traffic to inactivate on-demand paths

 Intermediate routers mark packets with link load
- Edge routers collect load info only on alternative paths
 Scalable
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Stable, converges
in a few RTTs
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« How energy-proportional is REsPoNse/EATe?

— ISP topologies
— Datacenter networks

« How quick is REsPoNse/EATe in shifting traffic?

- What is the impact of traffic aggregation on
application performance?
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10 Click routers in a diamond topology
(16 ms per-hop latency ) | =
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{ EATe starts running [ Link failure

EATe quickly and in a stable manner shifts traffic as needed
(either to save energy or to avoid failed links)
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- k=4 fat-tree topology

* Sine-wave demand
— Each flow [0, 1Gbps]
— Near (localized)

\Fé\f(non—localized)
; REsPoNse/EATe A

matches traffic changes,
expending the same
energy as ElasticTree
Heller et al., NSDI ’10
\[ ] /26




Live Modelnet experiment with VoD (BulletMedia [IPTV ‘07])
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Application performance and end-to-end latency
under REsPoNse-LAT is comparable to OSPF-InvCap at
both lower and higher utilization levels.
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REsPoNse/EATe

e REsPoNse/EATe
*

» Key idea: hybrid
offline/online approach

Optimality &

* Properties a >
Responsiveness o
» Stable

* Incrementally deployable

v

e Scalable

REsPoNse/EATe offers an optimal or a close-to-
optimal solution, with good responsiveness
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