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Networking Energy Consumption 

• Internet’s energy consumption is already large 

– US network infrastructure requires ~20 TWh/year 

– Italy’s ISP Telecom Italia needs ~2  TWh/year 

– Datacenter’s networking is 20% of server energy 

• More demands will result in further increases 

– Video streaming, Video-on-Demand, Cloud computing 

• CMOS reaching a plateau in power-efficiency  

– Cooling costs of new equipment will increase 

• 1 MW for latest Cisco platform, CRS-1 
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Network redundancy/variability in traffic 
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Redundancy 

Traffic variability 

Underutilized links 

In more than 40% of 5-min time 

periods the traffic changes at least 

by 20% percent 



Datacenter Networks 
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[Al-Fares et al., SIGCOMM ‘08] 

Large degree of 

redundancy 



Network Energy-(un)proportionality 
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Goal: Energy-Proportional Networks 
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 Possible Approach 

• Make individual components energy-proportional 

– Implementation and deployment challenges 

• Limits of energy efficiency in CMOS 

• Leakage current  

• Always-on components, …  
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Our Approach (Ensemble) 

8 

• Dynamically match resources 

to the load  

  make the ensemble 

energy-proportional 



Ensemble Approach Challenges 

• Producing significant energy savings 

• Meeting the SLOs 

• Avoiding oscillations 

• Ease of deployment 

• Responsiveness to traffic variations 
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Routing table computation 

• Routing that minimizes power consumption 

– Multi-commodity flow problem, but with 

additional constraints for power objective: 

 Links + routers (switches) on/off 

– Problem is NP-complete 

 

 
When traffic demand changes, 

optimal routing changes! 



Related Work 

• [Gupta et al., SIGCOMM ’03]  

− Greening of the Internet vision 

• [Nedevschi et al., NSDI ’08] 

– Local actions 

• [Chabarek et al., INFOCOM ’08] 

– Power-aware network provisioning 

• [Chiaraviglio et al., GreenCom ’09],  

 ElasticTree [Heller et al., NSDI ’10],  

 GreenTE [Zhang et al., ICNP ’10] 

– Online techniques 
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How Often is Recomputation Needed? 
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Routing table 

recomputed  

3-4 times per hour! 

Geant2 - European academic 

network 



Recomputation Wastes Energy or 

Causes Congestion 
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REsPoNse 
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Energy-aware 

Traffic Engineering 
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REsPoNse in Action 
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Time 

Online adaptation 



Outline 
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Online components 

Offline components 
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Energy-proportional routing paths 
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Always-on paths provide a routing that 

can carry low to medium amounts of 

traffic at the lowest power consumption 

On-demand paths start carrying traffic 

when the load is beyond the capacity 

offered by the always-on paths  

Peak-hour traffic 

Safety margin 

Minimize power consumption 

Failover paths are designed to 

minimize the impact of single failures 
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Computing REsPoNse paths 
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On-demand paths 

for additional  

traffic 

Always-on paths 

for low demand 

Failover 

paths 

Computation  

off the critical  

path 

Network Topology 

Device Power Model 

Low-load TM Estimate 

Peak-load TM Estimate 

+ safety margin 

(optional: latency 

bound) 



Outline 
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Online components 

Offline components 
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EATe [e-Energy ‘10] 

 

 

 

• Online effort to shift traffic to inactivate on-demand paths 

• Intermediate routers mark packets with link load  

• Edge routers collect load info only on alternative paths 

• Scalable 
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EATe Stability 

RX RB RI 
RJ 

RY 

RC RM RN 

RK 

L 

1: Collect (wIJ) 

2: Announce (1) 

2: Announce (1) 

1: Collect (wNY) 

3: Feedback (AB
KL) 

3: Feedback (AC
KL) 

Stable, converges 

in a few RTTs 



Evaluation Questions 

• How energy-proportional is REsPoNse/EATe? 

– ISP topologies 

– Datacenter networks 

• How quick is REsPoNse/EATe in shifting traffic? 

• What is the impact of traffic aggregation on 

application performance? 

23 



 0

 2 0

 4 0

 6 0

 8 0

 1 0 0

 1 2 0

u t i l - 1 0 u t i l - 5 0 u t i l - 1 0 0

P
o

w
e

r
 

[
%

 
o

r
i

g
i

n
a

l
 

n
e

t
w

o
r

k
 

p
o

w
e

r
]

U t i l i z a t i o n  

e p n

o p t i m a l

Energy-Proportionality (ISP topology) 

24 

~30% energy savings 

vs OSPF InvCap for 

same traffic load, 

close to optimal  O
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optimal 

InvCap 

REsPoNse/EATe 

Abovenet  US ISP topology  

Responsiveness 



Responsiveness/stability (live) 
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EATe quickly and in a stable manner shifts traffic as needed 

(either to save energy or to avoid failed links) 

EATe starts running Link failure 



Responsiveness/Energy-Proportionality (datacenter) 
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• k=4 fat-tree topology 

• Sine-wave demand 

– Each flow [0, 1Gbps] 

– Near (localized) 

– Far (non-localized) 

 

REsPoNse/EATe 

matches traffic changes, 

expending the same 

energy as ElasticTree 

[Heller et al., NSDI ’10] 



Impact on app. performance (live) 
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Application performance and end-to-end latency 

under REsPoNse-LAT is comparable to OSPF-InvCap at 

both lower and higher utilization levels. 

Live Modelnet experiment with VoD (BulletMedia [IPTV ‘07]) 



Conclusion 

• REsPoNse/EATe 

• Key idea: hybrid 

offline/online approach 

• Properties 

• Stable 

• Incrementally deployable 

• Scalable 
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REsPoNse/EATe offers an optimal or a close-to-

optimal solution, with good responsiveness 

REsPoNse/EATe 


