Responsive, Energy-Proportional Computer Networks

Nedeljko Vasić, Dejan Novaković, Satyam Shekhar, Prateek Bhurat, Marco Canini, and Dejan Kostić

Networked Systems Laboratory EPFL, Switzerland

Research sponsored by

Networking Energy Consumption

- Internet's energy consumption is already large
 - US network infrastructure requires ~20 TWh/year
 - Italy's ISP Telecom Italia needs ~2 TWh/year
 - Datacenter's networking is 20% of server energy
- More demands will result in further increases
 - Video streaming, Video-on-Demand, Cloud computing
- CMOS reaching a plateau in power-efficiency
 - Cooling costs of new equipment will increase
 - 1 MW for latest Cisco platform, CRS-1

Network redundancy/variability in traffic

Datacenter Networks

[AI-Fares et al., SIGCOMM '08]

Network Energy-(un)proportionality

Goal: Energy-Proportional Networks

Possible Approach

- Make individual components energy-proportional
 - Implementation and deployment challenges
 - Limits of energy efficiency in CMOS
 - Leakage current
 - Always-on components, ...

Our Approach (Ensemble)

 Dynamically match resources to the load

→ make the **ensemble** energy-proportional

Ensemble Approach Challenges

- Producing significant energy savings
- Meeting the SLOs
- Avoiding oscillations
- Ease of deployment
- Responsiveness to traffic variations

Routing table computation

- Routing that minimizes power consumption
 - Multi-commodity flow problem, but with additional constraints for power objective: Links + routers (switches) on/off
 - Problem is NP-complete

When traffic demand changes, optimal routing changes!

Related Work

- [Gupta *et al.,* SIGCOMM '03]
 Greening of the Internet vision
- [Nedevschi *et al.,* NSDI '08]
 - Local actions
- [Chabarek et al., INFOCOM '08]
 - Power-aware network provisioning
- [Chiaraviglio *et al.,* GreenCom '09], ElasticTree [Heller *et al.,* NSDI '10], GreenTE [Zhang *et al.,* ICNP '10]
 - Online techniques

How Often is Recomputation Needed?

Routing table recomputed 3-4 times per hour!

Geant2 - European academic network

Recomputation Wastes Energy or Causes Congestion

Recomputation causing congestion

Recomputation causing energy waste

REsPoNse

REsPoNse in Action

Online adaptation

Outline

Energy-proportional routing paths

Always-on paths provide a routing that can carry low to medium amounts of traffic at the lowest power consumption

On-demand paths start carrying traffic when the load is beyond the capacity offered by the always-on paths

Failover paths are designed to minimize the impact of single failures

Minimize power consumption

Computing REsPoNse paths

Outline

EATe [e-Energy'10]

- Online effort to shift traffic to inactivate on-demand paths
 - Intermediate routers mark packets with link load
 - Edge routers collect load info only on alternative paths
 - Scalable

EATe Stability

Evaluation Questions

- How energy-proportional is REsPoNse/EATe?
 - ISP topologies
 - Datacenter networks
- How quick is REsPoNse/EATe in shifting traffic?
- What is the impact of traffic aggregation on application performance?

Energy-Proportionality (ISP topology)

Abovenet US ISP topology

Responsiveness/stability (live)

EATe quickly and in a stable manner shifts traffic as needed (either to save energy or to avoid failed links)

Responsiveness/Energy-Proportionality (datacenter)

Impact on app. performance (live)

Live Modelnet experiment with VoD (BulletMedia [IPTV '07])

Application performance and end-to-end latency under REsPoNse-LAT is comparable to OSPF-InvCap at both lower and higher utilization levels.

Conclusion

- REsPoNse/EATe
 - Key idea: hybrid offline/online approach
- Properties
 - Stable
 - Incrementally deployable
 - Scalable

REsPonse/EATe offers an optimal or a close-tooptimal solution, with good responsiveness

